ORGANOSILICON COMPOUNDS

XXXII⁴. THE CLEAVAGE OF ARYL-SILICON BONDS BY SULPHUR TRI-OXIDE

R. W. BOTT^b, C. EABORN^b AND TADASHI HASHIMOTO^c Department of Chemistry, University of Leicester (Great Britain) (Received November 20th, 1964)

INTRODUCTION

Cleavages of aryl-silicon bonds by electrophilic reagents are electrophilic aromatic substitutions, analogous to those in which aryl-hydrogen bonds are broken¹, and cleavages by acids2.3, halogens4.5.6, nitrating agents, and mercuric salts7 have been studied in some detail. We now report the results of a qualitative study of cleavage of arvl-silicon bonds by sulphur trioxide^d. This reagent does not cleave alkyl-silicon bonds, and has been used, for example, to convert poly(dimethyl)siloxane into dimethylsilyl sulphate¹⁰ (97 %), and chlorotrimethylsilane into the trimethylsilyl ester of chlorosulphonic acid¹¹ (83 %).

RESULTS AND DISCUSSION

Aryltrimethylsilanes react readily with sulphur trioxide in carbon tetrachloride, in the absence of water, to give goods yields (generally So-90 %) of esters of the type ArSO, OSiMe_a, which are hydrolysed rapidly by water at room temperature to the free sulphonic acids:

 $ArSiMe_a + SO_a \longrightarrow ArSO_aOSiMe_a \xrightarrow{H_aO} ArSO_aH (+Me_aSiOH)$

This reaction sequence may be of value in synthesis as a means of introducing the sulpho group into an aromatic compound at a specific position under relatively mild conditions (cf. nitrodesilylation¹²). For example, m-tolyltrimethylsilane gives mtoluenesulphonic acid in good yield.

With bis(triorganosilyl)benzenes, replacement of one silvl group by the strongly deactivating SO.OSiMe, group retards cleavage of the other aryl-silicon bond, and esters of (triorganosilyl)benzenesulphonic acids can be obtained in good yields; for example, the compound m-Me₃SiC₆H₄SiMe₃ gives the ester m-Me₃SiC₆H₄SO₂OSiMe₃ in SS% vield. The esters may be quantitatively hydrolysed to the free sulphonic acids, and these may then be converted to the usual derivatives (see Table) without

⁴ For Part XXXI see C. EABORN AND D. R. M. WALTON, J. Organometal. Chem., 3 (1965) 168.

Present address: The Chemical Laboratory, University of Sussex, Brighton (Great Britain).
 Present address: Shizuoka College of Pharmacy, 160, Oshika, Shizuoka-shi (Japan).

^d For a preliminary account see refs. S and 9.

loss of the second silvi group. The acids m- and p-HSO₃C₆H₄SiMe₃ are the first reported compounds containing a sulphoarvl group attached to silicon; they are unusual organosilicon compounds in that they are water soluble*.

The esters formed by cleavage of the compounds m- and p-Ph₃SiC₆H₄SiMe₃ could not be purified because of their high boiling points, and the analyses of the derived sulphonic acids were poor, but various derivatives, Ph₃SiC₆H₄SO₃X, were obtained in good yields, indicating that the Ar-SiMe, bond is cleaved in preference to the Ph-SiAr_a or Ar-SiPh₃ bonds (cf. ref. 1, p. 152). This is consistent with the observation¹⁵ that the p-MeOC₆H₄-SiMe_a bond is cleaved about 60 times as readily as the p-MeOC₆H₄-SiPh₃ bond by aqueous methanolic perchloric acid at 50°, and about 1100 times as readily by bromine in aqueous acetic acid at 25°.

Benzyl-silicon bonds are not cleaved under the conditions used, and o-, m-, and p-[(trimethylsilvl)methyl] benzenesulphonic acids were obtained from the (trimethy|sily|) benzyl trimethy|silanes; the *p*-isomer was identical with that prepared from benzyltrimethylsilane and chlorosulphonic acid¹⁶.

Hydrolysis of the product (assumed to be the ester p-MeF₂SiC₆H₄SO₂OSiMe₃) of the reaction of the compound \dot{p} -MeF₂SiC₆H₄SiMe₃ with sulphur trioxide gave a water-soluble, very viscous, highly hygroscopic oil which was presumably a polysiloxane, $[Me(p-HSO_3C_8H_4)SiO]_n$. An attempt to obtain this polymer by hydrolysing the ester assumed to be Me₃SiOSO₂C₆H₄SiMe(OSO₂OEt),^{**} obtained by treating diethoxy-(methyl) p-(trimethylsilyl)phenyl silane with three equivalents of sulphur trioxide gave a product contaminated with ethyl sulphate.

In all cleavages, slightly less than one equivalent of sulphur trioxide was used and no evidence was found of normal sulphonation, i.e. attack at an Ar-H bond. It has been estimated that the $Ar-SiMe_a$ bond is approximately 10⁸ times as reactive as the Ar-H bond towards bromine in acetic acid⁴ and ro⁴ times as reactive towards aqueous sulphuric acid² but a lower factor would be expected in cleavage by the more reactive, less selective, sulphur trioxide***. In the compounds studied, the most reactive Ar-H bond relative to the Ar-SiMea bond in the same compound would be that para to the (trimethylsilyl)methyl group in [m-(trimethylsilyl)benzyl]trimethylsilane, but Ar-SiMea cleavage accounted for at least 85% of the reaction in this case.

Cleavage of arvl-silicon bonds may frequently or generally proceed through intermediates of type (I) (where E is an electrophile)¹. In acid cleavage, the simplest mechanism consistent with the facts is one in which the intermediate (I) (E = H)is formed in the slow step, and destroyed by nucleophilic attack by a solvent molecule on silicon, in a subsequent fast step³. If the intermediate (II) is involved in cleavage by sulphur trioxide in the weakly-polar carbon tetrachloride, it is unlikely that the Me_3Si group ever leaves the vicinity of the SO_3^- group. The ion Me_3Si^+ might separate and migrate to the SO_3^- group within an ion-pa⁺, or attack of an oxygen atom of the SO_{a} group on silicon might be synchronous with the breaking of the C-SiMe₃ bond

^{*} The preparation of water-soluble sulphoarylsilicon compounds having aliphatic carbon atoms between the silicon and the sulphoaryl group have been described^{13,14}. * Reaction of Mc.Si(OEt), with one equivalent of sulphur trioxide gives the easily hydrolys-

able Me_Si(OEt)OSO_OEt.

^{*} Little information on the effects of substituents in reactions with supplur trioxide is available (cf. ref. 17) but in competitive sulphonation at 25° , toluene is about 10 times as reactive as benzene¹⁸.

of the intermediate (II). Even more attractive is a fully-concerted four-centre process, $(III)^{2,4,*}$, but a similarly attractive analogous process for cleavage by bromine in carbon tetrachloride has been ruled out by a stereochemical study⁵.

EXPERIMENTAL

Preparation of compounds

[*m*-(*Trimethylsilyl*)*phenyl*[*triphenylsilane*^{**}. A solution of (*m*-chlorophenyl)trimethylsilane (18.5 g, 0.1 mole) and fluorotriphenylsilane (27.8 g, 0.1 mole) in toluene (50 ml) was added dropwise (during 30 min) to molten sodium (5.5 g, 0.24 g-atom) in boiling toluene (100 ml), and the mixture refluxed for 1 h and then cooled. Sodium salts and unchanged sodium were removed by filtration, and the filtrate was evaporated to dryness under reduced pressure. The residue was recrystallised from benzene-methanol to give [*m*-(trimethylsilyl)phenyl[triphenylsilane (31 g, 76%), m.p. 115-116%. (Found: C, 79.0; H, 6.6. C₂₇H₂₈Si₂ calcd.: C, 79.4; H, 6.9%).

[o-(Trimethylsilyl)benzyl trimethylsilane**, b.p. 76–77²/1 mm, n_D^{55} 1.4992 (Found: C, 66.3; H, 10.2. C₁₂H₂₄Si₂ calcd.: C, 66.0; H, 10.3 %.) was similarly obtained (86 g, 70 %) from (o-chlorobenzyl)trimethylsilane (103.5 g, 0.52 mole), chlorotrimethylsilane (56.7 g, 0.52 mole), and sodium (29 g, 1.26 g-atom).

Diethoxy(methyl) [p-(trimethylsilyl)phenyl]silane**. Triethoxymethylsilane (SS g. 0.49 mole) was added (at -70 to -80°) to the Grignard reagent from (p-bromophenyl)-trimethylsilane (124 g, 0.54 mole) and magnesium (14 g, 0.57 g-atom) in ether (200 ml). The mixture was then allowed to warm to room temperature and refluxed for 7 h. The ether was replaced by benzene, the magnesium salts were filtered off under dry nitrogen, and the solution was fractionated to give diethoxy(methyl)-[p-(trimethylsilyl)phenyl]silane (80 g, 57 %), b.p. 100-1027/1.5 mm, n_D^{25} 1.4739. (Found: C, 59.6; H, 9.6. $C_{14}H_{25}O_2Si_2$ calcd.: C, 59.5; H, 9.3 %).

 $Difluoro(methyl)[p-(trimethylsilyl)phenyl]silane^{**}$. Hydrofluoric acid (40 % w/w, 35 ml) was added to diethoxy(methyl)[p-(trimethylsilyl)phenyl]silane (25 g, 0.088 mole) in ethanol (250 ml) and the mixture refluxed for 5 h and poured into water (1 l). The non-aqueous layer was dissolved in ether, dried (Na₂SO₄) and fractionated, to give difluoro(methyl)[p-(trimethylsilyl)phenyl]silane (15.5 g, 76%), b.p. 46²/ 0.6 mm, n_{5}^{5} 1.4622. (Found: C, 51.9; H, 7.3; C₁₀H₁₆F₂Si₂ caled.: C, 52.1; H, 7.0%).

Sulphodesilvlation and the preparation of sulphonic acids and derivatives

(i) A freshly prepared solution of sulphur trioxide (4.0 g, 0.05 mole) (obtained by heating 65% oleum) in anhydrous carbon tetrachloride (40 ml) was added dropwise, with exclusion of moisture, during 10 min to a stirred solution of p-bis(trimethyl-

^{*} The order of the reaction is not known and possibly more than one molecule of sulphur trioxide is involved (sulphonation of aromatic compounds in nitrobenzene is second order in sulphur trioxide¹⁷), but additional molecules could be incorporated in processes of the general type postulated.

^{**} New compound.

silyl)benzene (17 g, 0.077 mole) in carbon tetrachloride (70 ml) cooled with ice-water. The mixture was refluxed gently for 15 min and then fractionally distilled through a precision-made Vigreux column (20 plates) to give bis(trimethylsilyl)benzene (5.1 g, 30 %), b.p. 79 /2 mm, m.p. 96-97 °, and trimethylsilyl p-(trimethylsilyl)benzene-sulphonate* [12.1 g, S0 % (allowing for recovered starting material)], b.p. 150-151 °/2 mm, 130-131 °/0.6 mm, m.p. 83-86 ° (sealed tube). (Found: C, 47.4; H, 7.15. $C_{12}H_{22}O_3SSi_2$ calcd.: C, 47.6, H, 7.3 %.)

(*ii*) The sulphonate (3 g) was dissolved in water (15 ml), and after 15 min the excess water and hexamethyldisiloxane were evaporated below 50° under reduced pressure, and the residue (2.4 g) recrystallised from benzene to give p-(trimethylsilyl)benzenesulphonic acid monohydrate* (2.1 g, 85%), m.p. 89-90° (sealed tube). (Found: C, 43.4; H, 6.45. C₉H₁₆O₄SSi calcd.: C, 43.5; H, 6.5%.) The S-benzyl-thiouronium salt*, m.p. 212-213° (from chloroform), was prepared in the normal way. (Found: C, 52.1; H, 5.8; N, 6.7. C₁₇H₂₄N₂O₃S₂Si calcd.: C, 51.5; H, 6.1; N, 7.0%.)

(*iii*) A solution of the sulphonate (7 g) in water (30 ml) was neutralized (to phenolphthalein) with 5% aqueous sodium hydroxide and the water removed at reduced pressure. The residue was taken up in a little water and re-precipitated by addition of ethanol, to give sodium p-(trimethylsilyl)benzenesulphonate mono-hydrate^{*} (5.7 g, 91%). (Found: C, 39.4; H, 5.95. C₉H₁₅NaO₄SSi calcd.: C, 39.9; H, 5.6%)

(*iv*) The sodium salt (5 g, 0.019 mole) was heated at 130° for 20 min with phosphorus pentachloride (7 g, 0.034 mole) and the mixture was added to ice-water (40 ml). Extraction with benzene, followed by separation, drying (Na_2SO_4) and fractional distillation of the extract gave *p*-(trimethylsilyl)benzenesulphonyl chloride* (3.9 g, 78%), b.p. 160-162°/11 mm, m.p. 56-57° (from light petroleum). (Found: C, 43.5; H, 5.45. C₉H₁₃ClO₂SSi calcd.: C, 43.45; H, 5.3%).

(r) The sulphonyl chloride (1 g) was added with stirring to a few ml of aqueous annonia (d 0.88). The solid which separated was dried and recrystallised from benzene-light petroleum, to give p-(trimethylsilyl)benzenesulphonamide*, m.p. 115-116°. (Found: C, 47.2; H, 6.8; N, 5.9, C₉H₁₅NO₂SSi calcd.: C, 47.1; H, 6.6; N, 6.1%).

(vi) Aniline (2 g) was added to a solution of the sulphonyl chloride (1 g) in benzene (20 ml), the mixture was refluxed for 5 min, cooled and washed with 0.5 N hydrochloric acid and then with water. The benzene layer was evaporated and the residue (1.2 g) was recrystallized from benzene-light petroleum, to give p-(trimethyl-silyl)benzenesulphonanilide[•], m.p. 122-123°. (Found: C, 58.7; H, 6.45; N, 4.65. C ₁₅H₁₉NO₂SSi calcd.: C, 59.0; H, 6.3; N, 4.6%.)

A number of aryltrimethylsilanes were treated similarly and details of the products are given in Table 1.

Difluoro(methyl) p-(trimethylsilyl)phenyl]silane (13 g, 0.056 mole) in carbon tetrachloride (100 ml) and sulphur trioxide (4.5 g, 0.056 mole) in carbon tetrachloride (180 ml) were reacted in the usual way. The residue (16 g) {assumed to be trimethylsilyl p-[difluoro(methyl)silyl]benzenesulphonate} was dissolved in water (100 ml) and refluxed for 2 h with excess barium carbonate. Insoluble barium salts were filtered from the cold solution which was then passed through a column of Amberlite IR-

^{*} New compound.

4	46
-	T -

TABLE 1

SULPHONIC ACIDS AND THEIR DERIVATIVES OBTAINED FROM ARYLSILANES

X	b.p.°[mm	#25 D	Yield ^a (%)	Found	Found %		Required %	
	(m.p.)			c	Н	c	Н	
Products m-M	e_SiC_H_SO_X fro	m m-Me _z Si	C _e H _s SiMe	۹.				
OSiMe ₃	135-6/1.5	1.4966	SSC	47.6	7-4	47.6	7-3	
OH-H.O O-PhCH_SC-	(65-6)	15		43.2	6.5	43-5	6.5	
(NH_)_]÷	(161-2)		-	51.6	6.3	51.5	6.I	
CI	140-7/10	1.5304	50	43.8	5.5	43-45	5.3	
NH ₂	(112-3)			47-2	6.9	47-1	6.0	
NHPD	(83-4)			59.0	0.5	59.0	0.3	
Products o-Me	SiCH_C_H_SO_X	from o-Me	SiCH_C_H	I ₄ SiMe ₃				
OSiMe _a	111-2/0.5	1.4958	50¢	49.2	7.5	49-3	7.6	
OH-H-O	(S7-S)		-	45.3	6.9	45.8	6.9	
O-Na+				41.9	5.7	42.2	6.0	
CI	89-90/0.3	1.5361	72	45.5	5.S	45-7	5.75	
NH.	(74-5)			49.7	7.2	49-35	7.0	
NHPh	(102-3)			60.0	6.7	60.I	<u>6.6</u>	
Products m-Me	SICH_C_H_SO_N	from m-M	sSiCH_C	H_SiMe_				
OSiMe.	133-4/0.6	1.4922	85	49.7	7.2	49.3	7.6	
он	dec.	1.5207	5	48.65	6.6	10.I	ó.6	
O-Na+		37		44.5	5-7	45.0	5.7	
CI	111-2/0.6	1.5280	73	45.9	5.8	45-7	5-75	
NH.	(75-ú)	5	75	49.7	6.9	49.35	7.0	
NHPh	(79-80)			59.1	6.6	60.1	6. 6	
Products D-Me.	SiCH_C_H_SO_X	from p-Me.	SiCH_C_H	I,SiMe,				
OSiMe.	151-2/1(114-5)	· ·	- So	10.1	7.6		7.6	
он	(115-6)4			4911	1.		,	
Products m-Me	C.H.SO.X from 1	n-MeC _e H _a S	Me-					
OSiMe.	124-5/1	1.4916	So	49.1	6.75	49.15	6.6	
CI -	(10.5-11.5) ^e			-				
NH ₂	(111)/							
Products m-Ph	SiC ₆ H ₄ SO ₂ X from	n m-Ph ₃ SiC	HISIMES					
OSiMe,	(127 dec.)		S 0	(not put	rified)			
он	(143 dec.)		2	(impure	;)			
0-Na++H_O				ò3.9	. 4-4	63.2	4-4	
CI -	(123-4)		9ú	66.3	4-4	66.2	4-4	
NHPh	(154-5)		-	73.0	4.9	73-3	5.1	
Products p-Ph.	SiC _e H ₁ SO ₂ X from	p-PhaSiCe	H ₁ SiMe,					
	(132 dec.)	(132 der.) 00			(not purified)			
OSIMe.					(impure)			
OSIMe ₃ OH	1135 GCC.)							
051Me ₃ 0H 07Na÷+H . O	(135 Gec.)			63.2	1.1	63.2	1.1	
051Me ₃ OH O~Na֥H <u>2</u> O Cl	(135 dec.) (185-6)		5 1	63.2 65.8	, 4-4 4.6	63.2 66.2	4-4	

^a Yields of acids and sodium salts from the esters, and of amides and anilides from the chlorides, were nearly quantitative. ^b Analyses given for new compounds. ^c Allowing for 30 %, recovery of starting material. ^d M.p. undepressed when mixed with sample made by the method of Bygden¹⁸. ^c Lit.¹⁹ m.p. 11.7[°], ^f Lit.¹⁹ m.p. 108[°].

120(H) ion-exchange resin, and evaporated to dryness under reduced pressure to give a highly hygroscopic, very viscous oil, assumed to be poly(methyl-p-sulphophenyl)siloxane (10.5 g, S7 %). [Found: C, 38.9; H, 3.9. (C₇H₈O₄SSi)_n calcd.: C, 38.9; H, 3.7 %.]

Treatment of diethoxydimethylsilane (9.0 g, 0.06 mole) with sulphur trioxide (4.0 g, 0.05 mole) by the general method gave ethyl ethoxydimethylsilyl sulphate* (5.2 g, 46 %), b.p. 66–67°/0.6 mm, n_{15}^{25} 1.40S5. (Found: C, 31.6; H, 7.0. $C_6H_{16}O_5SSi$ calcd.: C, 31.6; H, 7.0 %.)

ACKNOWLEDGEMENTS

This work was supported by a grant from the Office of Aerospace Research, United States Air Force, through its European Office. We thank Dr. L. SPIALTER, of the Chemistry Research Laboratory, Aerospace Research Laboratories, Wright Patterson Air Force Base, for his interest and encouragement.

SUMMARY

Aryltrimethylsilanes, ArSiMea, react with sulphur trioxide in carbon tetrachloride to give the sulphonic esters, ArSO, OSiMea, which undergo hydrolvsis readily to the sulphonic acids ArSO₂H. The reaction provides a means of introducing a sulpho group at a specific position of the aromatic ring; thus from *m*-tolvltrimethylsilane, m-toluenesulphonic acid is obtained in So % yield.

The reaction has been used to prepare from the compounds m- or p-R₃SiC₆H₄-SiMe_n, where R = Me or Ph, the acids *m*- or *p*-R₃SiC_eH₄SO₃H and their derivatives, the first examples of compounds containing sulphoarvl groups attached directly to silicon.

REFERENCES

- I C. EABORN, Organosilicon Compounds, Butterworth, London 1960, pp. 146-157.
- C. EABORN AND K. C. PANDE, J. Chem. Soc., (1960) 1566.
 R. W. BOTT, C. EABORN AND P. M. GREASLEY, J. Chem. Soc., (1964) 4804.
- 4 C. EABORN AND D. E. WEBSTER, J. Chem. Soc., (1960) 179.
- 5 L. M. STOCK AND A. R. SPECTOR, J. Org. Chem., 28 (1963) 3272.
- 6 C. EABORN AND O. W. STEWARD, J. Chem. Soc., (1965) 521.
 7 R. A. BENKESER, J. V. LISTON AND G. M. STANTON, Tetrahedron Letters, (1960) [15] 1.
 8 C. EABORN AND T. HASHIMOTO, Chem. Ind. (London), (1961) 1081.
- 9 R. W. BOTT, C. EABORN AND T. HASHIMOTO, J. Chem. Soc., (1963) 3906.
- 10 M. SCHMIDT AND H. SCHMIDBAUR, Chem. Ber., 93 (1960) 878.
- 11 M. SCHMIDT AND H. SCHMIDBAUR, Chem. Ber., 95 (1962) 47.
- 12 G. EABORN, Organosilicon Compounds, Butterworth, London, 1960, p. 154.
- 13 idem, p. 388.
- 14 D. L. BAILEY, U.S. Patent, (1961) 2,968,643.
- 15 C. EABORN AND R. C. MOORE, unpublished work.
- 16 A. BYGDEN, J. Prakt. Chem., 96 (1917) 86.
- 17 E. E. GILBERT, Chem. Rev., 62 (1962) 549.
- 18 H. CERFONTAIN, H. J. HOFMAN AND A. TELDER. Rec. Trav. Chim., 83 (1964) 493.
- 19 I. HEILBRON AND H. M. BUNBURY, Dictionary of Organic Compounds, Eyre and Spottiswoode, London, 1953.

* New compound.

J. Organometal. Chem., 3 (1965) 442-447